
https://glass-spider.io

Software Development Organization Practices 
VS 
Product Maturity Phases

Krzysztof Kobus
kk@glass-spider.io

mailto:kk@glass-spider.io


https://glass-spider.io

Motivation

• Most startups require software development team (in house or outsourced) to develop product or 
platform supporting their business

• Product maturity relates to achieved product-market fit, funding stage and available financial resources

• Organization of software development remarkably depends on maturity of the product



https://glass-spider.io

Product Maturity Phases

• Prototype

• MVP – Minimum Viable Product

• Launched Product (first regular users / customers)

• Established Product (plenty of regular users / customers)



https://glass-spider.io

Software Development Organization Practices

• Source code standards (code formatting, variable naming conventions)

• Source version control (branching)

• Test driven development (unit tests, functional tests)

• Frequency of releases

• Code reviews (pull requests)

• Pair programming

• Common code ownership

• Constant refactoring and simplification

• Focus, core functionality, error situations

• Technical documentation (source code, wiki)

• Formal work organization (Scrum)



https://glass-spider.io

Software Development Organization Practices

• Well defined tasks, milestones



https://glass-spider.io

Prototype

Just idea – no team, no funding, high risk

• Creative way to demonstrate the concept

• Make it cheap – no other rule



https://glass-spider.io

Universal Practices

• Common code ownership

• Source code standards (code formatting, variable naming conventions). Few key rules.

• Constant refactoring and simplification

• Documenting source code

• Well defined milestones (what goal to achieve)

• Pair programming – exclusively for targeted problem solving

• Frequent team updates on goals to achieve



https://glass-spider.io

MVP – Minimum Viable Product

Still just an idea of product formula – no or little funding, no traction, high risk

• Frequent “releases” – every code commit is new “release”

• Very basic source version control

• Focus on core functionality, accept bugs and limitations at scale

• Very limited and only fundamental documentation (wiki)

• No formal work organization like Scrum



https://glass-spider.io

Launched Product

Basic formula identified, some funding, traction, medium-high risk

• Source version control (branching, tags)

• Frequent releases – regularly tagged / branched

• Basic test-driven development techniques (unit tests, functional tests)

• Focus on core functionality and typical error situations

• No formal work organization like Scrum – too frequent scope changes

• Well established fundamental documentation (wiki)

• Code reviews (pull requests) for changes of high risk of regression only

• Backlog of well-defined tasks



https://glass-spider.io

Established Product

Formula identified, decent funding, traction, low risk

• Full code reviews, if needed also by two engineers

• Less frequent releases – regularly tagged / branched

• Well established full documentation (wiki)

• Sophisticated source version control usage

• Formal work organization like Scrum

• Sophisticated test-driven development (unit tests, functional tests)

• Focus on stability, fully serviced error situations



Krzysztof Kobus
CTO & Founder, Glass-Spider

© Copyright Krzysztof Kobus 2020

kk@glass-spider.io

www.glass-spider.io

www.linkedin.com/in/krzysztofkobus/

www.flat6labsbahrain.com/mentor
/krzysztof-kobus/

mailto:kk@glass-spider.io
mailto:kk@glass-spider.io
https://glass-spider.io/
https://www.linkedin.com/in/krzysztofkobus/
https://www.linkedin.com/in/krzysztofkobus/
http://www.flat6labsbahrain.com/mentor/krzysztof-kobus/

