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Motivation

• Most startups require software development team (in house or outsourced) to develop product or 
platform supporting their business

• Product maturity relates to achieved product-market fit, funding stage and available financial resources

• Organization of software development remarkably depends on maturity of the product
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Product Maturity Phases

• Prototype

• MVP – Minimum Viable Product

• Launched Product (first regular users / customers)

• Established Product (plenty of regular users / customers)
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Software Development Organization Practices

• Source code standards (code formatting, variable naming conventions)

• Source version control (branching)

• Test driven development (unit tests, functional tests)

• Frequency of releases

• Code reviews (pull requests)

• Pair programming

• Common code ownership

• Constant refactoring and simplification

• Focus, core functionality, error situations

• Technical documentation (source code, wiki)

• Formal work organization (Scrum)
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Software Development Organization Practices

• Well defined tasks, milestones
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Prototype

Just idea – no team, no funding, high risk

• Creative way to demonstrate the concept

• Make it cheap – no other rule
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Universal Practices

• Common code ownership

• Source code standards (code formatting, variable naming conventions). Few key rules.

• Constant refactoring and simplification

• Documenting source code

• Well defined milestones (what goal to achieve)

• Pair programming – exclusively for targeted problem solving

• Frequent team updates on goals to achieve
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MVP – Minimum Viable Product

Still just an idea of product formula – no or little funding, no traction, high risk

• Frequent “releases” – every code commit is new “release”

• Very basic source version control

• Focus on core functionality, accept bugs and limitations at scale

• Very limited and only fundamental documentation (wiki)

• No formal work organization like Scrum
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Launched Product

Basic formula identified, some funding, traction, medium-high risk

• Source version control (branching, tags)

• Frequent releases – regularly tagged / branched

• Basic test-driven development techniques (unit tests, functional tests)

• Focus on core functionality and typical error situations

• No formal work organization like Scrum – too frequent scope changes

• Well established fundamental documentation (wiki)

• Code reviews (pull requests) for changes of high risk of regression only

• Backlog of well-defined tasks



https://glass-spider.io

Established Product

Formula identified, decent funding, traction, low risk

• Full code reviews, if needed also by two engineers

• Less frequent releases – regularly tagged / branched

• Well established full documentation (wiki)

• Sophisticated source version control usage

• Formal work organization like Scrum

• Sophisticated test-driven development (unit tests, functional tests)

• Focus on stability, fully serviced error situations
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